Thoughts on Xcel’s 2030 Resource Plan

Xcel Energy, the state’s largest electric utility, has filed their 2016-2030 Resource Plan with the Public Utilities Commission. This begins a long process of commenting and modification until their plan is approved by that body (which can take years). The Resource Plan details what trends in usage Xcel expects, and what resources (like new power plants, etc) are needed to meet that demand. The plan is important because it identifies the infrastructure investments the utility will need to make, and also the resulting environmental performance, among many other details.

I’m slowly making my way through it, both for professional and personal interest, and hope to highlight some thoughts for you, my dozens of readers.

There are a lot of things to like in the plan, the first being that Xcel is planning to meet State greenhouse gas emissions reduction goals within their own system. This is unlike the previous plan, which showed emissions increasing between 2015 and 2030. The chart below, from Appendix D, compares the two plans. (State goals include a reduction of 15 percent by 2015, 30 percent by 2025 and 80 percent by 2050)

2030 CO2 Emissions Xcel

Most of the planned reductions in carbon pollution come from the addition of renewable energy resources to their system, as the chart below shows. By 2030, Xcel plans for 35 percent of their energy portfolio to be renewables.

Sources of CO2 reductions

However, I think the plan’s assumptions about the future cost of the solar portion of those renewables is probably too high.

Xcel plans to add over 1,800 MW of utility-scale solar to their system by 2030 (up from basically zero in 2015). This is a significant increase from the “reference case”, a ten-fold increase in fact. However, this slide was presented at a public meeting at the Public Utilities Commission:

Renewable Price ForecastXcel says this in Appendix J about their assumption:

As solar technology is still not fully mature, and costs are expected to decline and conversion efficiency to improve, it was assumed that the $95/MWh price holds throughout the study period. In effect, the assumption is that fundamental cost driver improvements will offset inflation.

So the rate of decrease in solar prices will match the inflation rate? Many sources have documented the dramatic decline in solar PV prices over recent years. Lazard seems to be an oft-cited source, and their 2014 Levelized Cost of Energy Analysis shows the price of energy from solar has dropped 78% since 2009. According to, the cumulative rate of inflation between 2009 and 2014 was about 10%. So, at least looking historically, this seems way off.

Of course, current precipitous declines probably won’t continue forever (most of the cost is now not modules). NREL says costs have been dropping on average 6 to 8 percent per year since 1998. If we assume just half of that decline per year (4 percent), solar energy would be around $51 per MWh in 2030. Using some very back-of-envelope calculations, a price difference of $46 per MWh in 2030 means costs for new solar energy shown in the Plan’s “Preferred Plan” scenario could be over-estimated by $97 million.

This is significant not just because the price estimates of the Preferred Plan may be too high. In preparing the plan, Xcel also ran seemingly dozens of other scenarios, some including CO2 reductions of over 50% in 2030 (compared with 2005). The price difference, according to Xcel, between the Preferred Plan scenario and the scenario with the largest CO2 benefit is $172 million (from Appendix J). These other scenarios which seem too costly may actually be more in line with what Xcel is currently asking to spend once dropping technology costs are factored in.

November solar doldrums

cloud gif

I made this gif of visible satellite imagery from the NOAA’s Geostationary Satellite Image Archives. It basically shows cloud cover over the last 12 days at about 1 pm (19:15 zulu) each afternoon. This is a high-tech way of saying we’ve barely seen the sun for the last two weeks.

The implications for my 300 watt off-grid solar project are that almost nothing is being produced, and I’m not running anything from the batteries. With no sun in the forecast, I’m concerned about them sitting at a low stage of charge for days (or weeks at this point), which can reduce the life of lead-acid batteries.

In Minnesota in the winter, solar needs a backup, or at least a supplement. It’s great to have a grid. If I were truly off-grid, I would need some other kind of backup unless I was willing to significantly overbuild batteries or panels.

How much energy could Minneapolis get from solar?

Solar PV seems to be the current darling of the renewable energy world.  But how much “resource” is really out there?  How much should cities rely on the development of local solar resources to meet their climate and energy goals?  What trade-offs should urban cities make between desirable things like tree canopy and maximizing solar energy resources?  GIS tools and new data resources can help begin to answer that question.

Counties and states are beginning to produce LiDAR data more regularly, which provides the building block information needed to analyze solar resources on buildings and elsewhere (see my previous post for a brief intro to LiDAR, or see here).  Minnesota happens to have LiDAR for the whole state, and Minneapolis has a climate action goal that references local renewable development, so I’ll focus there.

So how much solar electric potential does Minneapolis have?  Enough to supply 773,000 megawatt-hours (MWHs) each year, at the upper bound.  That would mean covering every piece of rooftop with good sun exposure and appropriate pitch (southeast to southwest facing or flat) with the best modern PV panels.  It would also mean solar installations on 68,351 structures, consisting of over 2.3 million individual panels. Continue reading

100 days of solar


Watt hours to the battery, first 100 days

Today I noticed that my solar charge controller has been running for 100 days (it logs this among many other data points).  Here are some highlights from the first 100 days:

  • The system has produced 32 kWhs from two 100-watt panels.  This is roughly 2% of the total electricity consumption we saw over the same period last year.
  • Converting from DC current to AC current at low wattages is wildly inefficient.  I usually run the wifi router and cable modem continuously off the battery and I lose about 40% of my produced energy to the inverter.  It is much happier running closer to its peak (1000 watts).  We should probably convert to DC.
  • Something happened to my charge controller settings when I converted to 24 volts.  Although the controller was still charging, I lost about 10 days worth of data (hence the gap in the chart) and wasn’t able to communicate with it over that time.  A firmware reboot fixed this.
  • Although very cold, clear days are when the panels perform their best, the sun just doesn’t shine for that long each day in January and February in Minnesota.  The panels being on the ground doesn’t help either.  Just from the middle of March to the middle of April I’ve about doubled my daily output.
  • All that said, this chart doesn’t really show total potential of the panels on a given day.  If I didn’t use much of the battery the day before, panel production the next day was curtailed by the controller to avoid overcharging the battery.  I’m trying to match the loads I put on the battery with the “capacity” of the season, but that’s sometimes tricky.
  • I recently learned we were accepted into the Minnesota solar rebate program for 2014!  So with the help of a friendly solar installer, we should have a 2.8 kW grid-tied system installed sometime this year. Along with the grid-tied panels, the installer will be adding two panels on the roof dedicated to battery charging.  Now I just have to wait…

Mapping Minnesota’s solar resource

Boston, New York City, Denver, Cambridge and other cities have created solar potential maps to help their residents understand that solar photovoltaic systems are viable in dense urban areas, and to demonstrate the potential that exists on rooftops.

Of course, I had to try this myself.

Minnesota produces LiDAR data, which is basically micro-scale elevation data produced by flying a plane back and forth in a grid and shooting the ground with lasers a bajillion times.  Skilled/obsessive GIS users can clean from this data information that can be used to make a fairly accurate model of everything on the ground (buildings, trees, etc).  GIS software also makes it easy to produce daily, monthly or annual solar insolation maps.  By taking the position of the buildings and trees, knowing the latitude, and projecting how the sun moves across the sky throughout the year, the software calculates a total amount of solar radiation that will hit a point after shading, angle and other factors are taken into account.

Solar insolation in January

Solar insolation in January

After much tinkering, the Kingfield Solar Energy Potential map was born.  The extreme density of the LiDAR data limits how large an area I could process (there were 4.9 million individual data points in this one small section of Minneapolis), but you get the idea.  This map shows the area of each roof that might be appropriate for solar, how many panels could fit in that area, and an estimate of the annual production from those panels.

The Kingfield Solar Map

The Kingfield Solar Map

Some roofs are wholly inappropriate for solar, whether due to tree or building shading, orientation or size.  But there is significant potential.  If solar was installed on every appropriate piece of roof in this one-quarter square mile area, it would produce an estimated 2.2 megawatt hours of electricity each year, and avoid 2.9 million pounds of carbon dioxide emissions.

Counting every watt hour

This little device is an ethernet to wi-fi adapter. It connects my solar charge controller to my home wi-fi network so I can make fancy graphs.  It uses 1.2 watts per hour.  I know this because I measured its usage using a watt meter.  I do this with everything I power from the solar batteries.

I have a hunch that this is what solar does to you, makes you compulsive about energy use.  Even if (when?) I have a large grid-tied system, I imagine myself checking the daily output, and constantly thinking about how to reduce my usage to match.

On very cloudy days, this little thing has used over 45% of the energy produced by the panels.  I unplugged it.  For now, graphs only on special occasions.

Home solar: adding MPPT and marvelous data


As part of my plan for the eventual expansion of my off-grid solar energy system, I recently added a new charge controller with Maximum Power Point Tracking (MPPT).  Besides being much more efficient, this controller is capable of producing reams and reams of wondrous data, and is network-connected, meaning I can geek out on battery voltage and array current from anywhere in the house!  The charge controller I had was great, but it wouldn’t handle anything beyond a few more small panels.  Now I should be able to go all the way up to 750 watts of panels (my goal).  So, thanks Santa!

While installing the controller, I also took the opportunity to install a breaker box, which should bring me closer to code, and upgrade to larger diameter battery cable, which should reduce efficiency losses.

The MPPT advantage

MPPT is a fancy way of saying the charge controller is able to send significantly more energy to the batteries from the same panels.  How much more? After only a few days of testing, I estimate 40 – 60% more than the Pulse-Width Modulation (PWM) controller on days when the battery is low.  (If you want to know the details of how MPPT works, I found this explanation helpful.)

Here’s some actual data from my system which I think illustrates the MPPT advantage well:

1-5 plain graph

The blue line is the amps, or current, coming from the panels.  The red line shows the amps the controller is putting in to the battery.  It’s higher!  The magical MPPT doohicky converts excess voltage into amperage (remember, amps X volts = watts) so less of your panel’s potential is wasted.  On this particular day, I estimate the charge controller may have been able to wring an extra 100 – 150 watt-hours from the panels.

There are other interesting things going on here, so here’s a little annotation:

1-5 annotated graph

Here’s the next day, when the battery starts out the day almost totally full.  It was very sunny.

1-6 amps graph

The controller limits the array current and current to the battery significantly because the battery is almost fulled charged.  The gentle downward slope in the amperage is a function of battery charging called absorption.  Less current is pushed into the battery as it reaches capacity.

I can track hundreds of days of watt-hour production, so I’ll do another update when I can show some seasonal changes.  How I yearn for the days when the panels get more than 4 hours of sun per day!

Xcel Energy: social cost of carbon is $21 per ton

Old news, but still worth posting. In October, Xcel Energy filed a report with the Public Utilities Commission defending the cost overruns of upgrading the nuclear power plant in Monticello. Via the Star Tribune:

Xcel filed the report in response to the state Public Utilities Commission’s pledge in August to investigate the Monticello investment. The company said that even with the cost overruns, the project benefits customers — saving an estimated $174 million through the remaining 16 years of its license.

Yet that cost-benefit number relies on a “social cost” comparison between keeping the nuclear plant, which emits no greenhouse gases, vs. generating electricity from a plant that does emit them. State law says utility regulators should consider the cost of greenhouse gas emissions, though they’re not currently regulated. Without carbon-emissions savings, the Monticello upgrade would be a losing proposition, costing customers $303 million extra over its life, according to Xcel’s filing.

In interviews, Xcel executives defended the investment, saying they would make the same decision today, even though the utility world has changed since 2008, when the project began. Natural gas, now a favored fuel for power plants, is low-priced thanks to the fracking boom. And electricity demand has lagged since the recession, dampening the need for new plants.

“If we didn’t have our nuclear plants, we would be taking a big step backward in terms of our CO2 accomplishments,” said Laura McCarten, an Xcel regional vice president.

If you dig into the dockets (CI-13-754), you can find that Xcel’s modeling assumptions include a price on carbon of $21.50 per metric ton starting in 2017.

Regardless of your feelings about nuclear power, a utility stating that the externalities of carbon should be priced when making energy planning/financing decisions is significant. The use of a ‘social cost of carbon’ (SCC) metric at the federal level has (not shockingly) been the point of some contention.  The Office of Management and Budget’s SCC is $35/mt in 2015 versus Xcel’s $21 in 2017.

Theoretically, we should start to see this figure or something similar used in all future energy planning decisions (Sherco, cough, cough) in Minnesota.  Unless of course, Xcel was only being selective in order to justify recovering this very large expense (and spare the shareholders).

It would be an interesting exercise to apply this Minnesota SCC to land use and transportation infrastructure and planning decisions.

Planet levers we can pull at home


At Ensia, Jon Foley explores how we can break the cycle of climate inaction:

Frankly, we cannot afford to waste more time in a state of denial, saying that maybe this time our national leaders will wake up and take the problem seriously. We need to look for leadership and solutions elsewhere.

More importantly, we need to match our climate solutions to situations where leadership is still effective. We need to find targeted, strategic opportunities to reduce emissions, matching solutions to effective leadership.

But just where are those targeted opportunities?

In the search for effective climate solutions, we need to look for what I call planet levers: Places where relatively focused efforts, targeted the right way, can translate into big outcomes. Just like a real lever, the trick is to apply the right amount of force in just the right place, with little opposition.

In the search for planet levers to address climate change, we should look for ways to significantly cut emissions that don’t require grand policy solutions, such as carbon taxes or global cap-and-trade schemes, or the approval of the U.S. Congress or the United Nations. We need practical solutions to substantially cut emissions that work with a handful of nimble actors — including a few key nations, states, cities and companies — to get started.

Focusing on cities presents a particularly good set of levers to address climate change. Cities represent a nexus point of critical infrastructure — for electricity, communications, heating and cooling, and transportation — that are already in desperate need of improvement, and shifting them toward low-carbon “climate smart” technologies is a natural progression. Done right, most of these investments would improve the health, economic vitality, efficiency and livability of cities. Most important, most cities largely avoid the partisan gridlock of our national (and some state) governments, making them an excellent place for making progress.

I agree with Jon that cities are a good place to focus, not only because they have “functioning governments” that aren’t deadlocked, but because they have some key policy levers that can be pulled without a great deal of opposition, without getting a huge number of actors involved (creating potential for gridlock or slow movement), and that could have significant emissions impacts in a short time period.

Here are some of the local climate levers I think we can lean on locally, mostly at the city level.

Community choice aggregation (CCA)

The deregulation of electric utility markets is usually associated with some bad outcomes.  However, it can have positive benefits as well.  Since July of this year, over 58,000 residents and over 7,000 small business customers in Cleveland have received a 21% savings on their electricity bill AND received electricity from 100% green sources (50% wind, 50% hydro) through the Cleveland Municipal Aggregation Program.

This type of program is made possible by the fact that in deregulated electricity markets, cities can act as bulk purchasers for all or many of their community’s electrical customers.  This large buying power allows cities to negotiate good terms – like low rates and high renewable percentages.  These programs also don’t require the dismantling or purchasing of local investor-owned utilities.  Six states allow CCAs, and to date eight cities have used this authority to secure cleaner, more affordable power for their residents.  Most allow customers to opt-out and stay with their existing utility if they choose.

A program that requires electric customers to basically do nothing and could reduce the city’s greenhouse gas footprint 3% seems like a pretty good lever.

Note: state legislation is required to make CCA a reality.

Community solar (solar gardens)

Most people in Minnesota (some say only a third) have a roof that is good for collecting solar energy.  Shading, orientation, structural integrity, and ownership structure are just a few of the potential barriers to putting solar on roofs.  Matching the demand for solar with the supply of best locations, developed at a large scale for efficiencies, is something community solar or solar gardens can do.  These programs could be a powerful climate lever.  According to Midwest Energy News:

Minnesota's first community solar project in Rockford, MN. Image courtesy Wright-Hennepin Cooperative.

Minnesota’s first community solar project in Rockford, MN. Image courtesy Wright-Hennepin Cooperative.

The idea is to let customers who can’t or don’t want to install solar panels on their own rooftop instead buy individual panels in a nearby solar development. The electricity generated by a customer’s panels is credited to their utility bill as if they were installed on their home or business.

New legislation makes this possible in Minnesota.  In Colorado, where the program has been in place since 2012, 9 megawatts of solar was sold out in 30 minutes.   That’s roughly the equivalent of 3,000 single family home-sized systems.  Time will tell if this demand by project developers translates into strong demand by consumers.

Solar gardens generally require state policy change (except in the case of a municipal or cooperative utility), but don’t require thousands of people making individual installation decisions, hiring contractors, finding financing, etc.  A smaller number of experienced installers can do big projects with (theoretically) lower costs, supported by community interest.  Customers can buy-in to solar projects at whatever level they choose (usually bound by a minimum and maximum) but can skip all the installation headaches.

Capturing waste heat from the sewer

This one is my favorite.  There is a large supply of wasted heat flowing directly beneath our feet all day because we’ve literally flushed it down the drain.  One estimate says we’re flushing away 350 billion kWh of energy each year.  That’s more than 35 Minneapolis’ worth of energy every year.

Neighborhood Energy Utility, City of Vancouver

Vancouver’s Southeast False Creek Neighborhood Energy Utility

Sewer waste heat recovery systems, or “sewer thermal”, work just like ground-source heat pumps to pre-condition air or water before they are used for heating and cooling (don’t worry, no sewer water or gas gets into your air conditioner).  In the Olympic Village neighborhood of Vancouver, sewer waste heat provides 70% of the annual energy demand of a district heating system (natural gas provides the rest).  National Geographic has a good overview of the growing attention being paid to sewer thermal.

All major cities have large sewer mains collocated with the highest density development. Tapping this waste heat resource would require digging up those pipes, but it can be done much more easily in conjunction with large new redevelopment projects.  And generally, there are few actors: wastewater utilities control the pipes, cities control the right of way.

Making energy use transparent

According to the EPA, the commercial and residential sectors were responsible for 40% of US greenhouse gas emissions from the burning of fossil fuels (which is itself responsible for 79 percent of emissions) in 2011.  And in most major cities, it’s the large buildings (usually commercial buildings) that are associated with half or more of the energy consumption and associated greenhouse gas emissions.  Making these buildings more energy efficient could be a significant climate lever, but that requires knowing how they are performing now and motivating action from their owners and managers.

Nine cities in the US (and many more internationally) are addressing building energy use by making energy usage information more transparent.  Building rating and disclosure policies (typically enacted by cities) require large buildings to use widely adopted benchmarking tools to measure their energy performance, and generally require them to disclose this information, along with a score, to the public.


In New York City, one million residents can now see how much energy and water their apartment buildings consumed.  In total, over 2 billion square feet of real estate in New York City is now benchmarking building energy and water performance each year.  This information isn’t just for tenants, building owners and managers, real estate professionals, and energy service providers can all use this information to improve the performance of the building stock.  In 2012, in their first report on benchmarked buildings, New York City estimated that:

If all comparatively inefficient large commercial buildings were brought up to the median energy use intensity in their category, New York City consum­ers could reduce energy consumption in large buildings by roughly 18% and GHG emissions by 20%. If all large buildings could improve to the 75th percentile, the theoretical savings potential grows to roughly 31% for energy and 33% for GHG emissions. Since large buildings are responsible for 45% of all citywide carbon emissions, this translates into a citywide GHG emissions reduction of 9% and 15% respectively. Much of this improvement could be achieved very cost-effectively through improved operations and maintenance.

An EPA study also showed that buildings doing benchmarking reduce their energy usage.  An analysis of 35,000 large buildings over three years showed that these buildings showed a 7 percent average energy savings.  Many of these policies are very new (NYC has only reported results for two years), so time will tell how increased public scrutiny of energy performance influences energy use.  But ask any building professional, and they will tell you that the first step to improving efficiency is measuring what is currently being used.

LED streetlights

Streetlights typically account for a significant portion of the electricity used by a city government enterprise.  For Minneapolis, its 31 percentNavigant says up to 40% can be typical.  Water treatment (for drinking) and wastewater treatment are two other major sources of energy use for cities or regional government entities.

Streetlight retrofits can often be done by a city itself, if they own the lights, or by the utility, which is also sometimes the owner.  Retrofits can be quick (a few years), and the paybacks, both in greenhouse gas emissions and cost, can be significant.

LA's Hoover Street before and after LED lighting retrofit. Image via Los Angeles Bureau of Street Lighting

LA’s Hoover Street before and after LED lighting retrofit. Image via Los Angeles Bureau of Street Lighting

Los Angeles recently completed the world’s largest swap-out, replacing 140,000 lights.  Los Angeles estimates it will save $7 million in energy costs and $2.5 million in avoided maintenance costs (LEDs can last as long as 20 years, versus the standard lights 6).  The project will be paid off in seven years.  New York City, Las Vegas, Austin Texas, San Antonio, and Eden Prairie, Minnesota are all switching.  For cities in the metro that don’t own their own lights, Xcel Energy is testing 500 LED lights in West Saint Paul, and could set a new rate for cities once the test is complete.  Initial results are showing energy use is cut in half, while the quality of the light has improved.

These are some examples of “levers” I think can be pulled relatively quickly, and without a great deal of political wrangling. And maybe more importantly, they can be done at the local level, usually by cities.  Cities are demonstrating they can and will move on climate, breaking what Jon calls the “cycle of climate inaction”.

There may be other strategies which are essential to addressing climate change, but which require engaging many more stakeholders and/or take significantly more time (an example might be residential building energy retrofits).  These strategies may be just as critical, often because they may address issues besides energy and climate – like environmental equity.  But if we want to work on a timetable that’s anything close to what they experts call for, we should identify and prioritize these short timeframe, high-impact levers we can pull at home.